<address id="2CW"></address>

    <address id="2CW"><dfn id="2CW"></dfn></address>

    <sub id="2CW"></sub>

          <sub id="2CW"></sub>
          <sub id="2CW"><listing id="2CW"><mark id="2CW"></mark></listing></sub>
          <sub id="2CW"></sub><address id="2CW"><dfn id="2CW"></dfn></address><sub id="2CW"></sub><sub id="2CW"></sub>
          <form id="2CW"></form>
            <address id="2CW"><dfn id="2CW"><mark id="2CW"></mark></dfn></address>
                <address id="2CW"><dfn id="2CW"></dfn></address>

                  <address id="2CW"></address>
                <thead id="2CW"><delect id="2CW"><ins id="2CW"></ins></delect></thead>

                      <address id="2CW"></address>

                      boutique精品展示

                      Cell Biolabs彗星实验试剂盒

                      由于环境因素和细胞内的正常代谢过程造成的DNA损伤,每个细胞每天都会发生1,000到1,000,000个。虽然这些只占人类基因组约60亿个碱基中的一小部分,但如果关键基因损伤未及时修复,可能会阻碍细胞的正常生理功能,进而增加癌变可能。彗星实验,或称单细胞凝胶电泳(Single cell gel electrophoresis,SCGE),是一种测量单个细胞DNA损伤的常用技术。其原理很简单,即在电泳场中,将受损细胞DNA(包含片段和链断裂)与完整的DNA分离,通过显微镜可观察到损伤细胞呈现出典型的彗星状尾巴,然后通过测量计算彗尾大小对比出细胞DNA损伤的程度。因为彗星实验的特点,该方法几乎被用来评估任何类型的真核细胞的 DNA 修复能力,包括双、单链断裂的不同的 DNA 损伤情况。是一种能快速、大通量检测真核细胞DNA损伤进而判别遗传毒性的技术。 彗星实验结果图 彗星实验原理虽简单,但操作繁琐,需要丰富的实验经验和技巧,尤其常常出现的“脱胶”问题,困扰了许多科研人员。除此之外,有时为了跑出完美的“彗星”图案放在paper里,还需要重复做许多次实验,费时费力。为了解决上述问题,我们推荐CellBiolabs的OxiSelectTMComet Assay Kit即彗星实验试剂盒来检测细胞的DNA损伤。该试剂盒不仅能让彗星实验化繁为简,还有两种不同规格(3孔和96孔)的细胞电泳凝胶板供选择,让少量样本和大量样本的DNA损伤检测通通轻松hold住。用该试剂盒做彗星实验流程如下图。 除了操作简便,OxiSelectTMComet Assay Kit还有以下优点: 1) 适用于各种DNA损伤检测,是一款非常好用的DNA损伤检测筛选工具; 2) 试剂盒中的载玻片经过特殊处理以粘附低熔点琼脂糖,避免“脱胶”问题出现; 3) 采用特殊的DNA荧光染料,能有效降低背景干扰,更加方便读取实验结果。 彗星实验试剂盒信息:品名 货号 规格 说明 OxiSelectTM Comet Assay Kit (3-Well Slides) STA-350 15 assays 试剂盒内有5张3孔载玻片和彗星实验所需的低熔点琼脂糖、裂解液及DNA荧光染料等,共可检测15个样品。 OxiSelectTM Comet Assay Kit (3-Well Slides) STA-351 75 assays 试剂盒内有25张3孔载玻片和彗星实验所需的低熔点琼脂糖、裂解液及DNA荧光染料等,共可检测75个样品。 OxiSelectTM Comet Assay Kit (96-Well Slides) STA-355 96 assays 试剂盒内有1张96孔载玻片和彗星实验所需的低熔点琼脂糖、裂解液及DNA荧光染料等,共可检测96个样品。 为了满足客户更多样的实验需求,彗星实验试剂盒内特殊处理电泳载玻片还可以单独购买,详情如下: 品名 货号 规格 产品图片 Comet Assay Slides, 3-Well STA-352 5 slides STA-353 25 slides Comet Assay Slides, 96-Well STA-356 1 slides STA-356-5 5 slides 产品部分发表文献: Maiuri, T. et al. (2016). Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex. Hum. Mol. Genet. doi:10.1093/hmg/ddw395. Irianto, J. et al. (2016). Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol. Bio. Cell doi:10.1091/mbc.E16-06-0428. Andronescu, E. et al. (2016). Nanomaterials for medical applications: Benefits and risks. J Nanomater. doi:10.1155/2016/8284319. Liu, Z. et al. (2016). Canonical microRNAs enable differentiation, protect against DNA damage, and promote cholesterol biosynthesis in neural stem cells. Stem Cells and Dev. doi:10.1089/scd.2016.0259. Dai, C. et al. (2016). Curcumin ameliorates furazolidone-induced DNA damage and apoptosis in human hepatocyte L02 cells by inhibiting ROS production and mitochondrial pathway. Molecules. 21:1061. Beegle, J. R. et al. (2016). Preclinical evaluation of mesenchymal stem cells overexpressing VEGF to treat critical limb ischemia. Mol Ther Methods Clin Dev.doi:10.1038/mtm.2016.53. Suzuki, Y. et al. (2016). Pharmacodynamics of anti-inflammatory drugs–intranasal corticosteroid and dna damage. Pharmacodynamics of anti-inflammatory drugs. 117-126. Zhang, J. et al. (2016). Inhibition of Glucose-6-Phosphate Dehydrogenase could Enhance 1, 4-Benzoquinone-induced Oxidative Damage in K562 Cells. Oxid Med Cell Longev. doi:10.1155/2016/3912515. Jang, J. H. et al. (2016). APO-9′-fucoxanthinone extracted from undariopsis peteseniana protects oxidative stress-mediated apoptosis in cigarette smoke-exposed human airway epithelial cells. Mar Drugs. doi:10.3390/md14070140. Ebeid, S. A. et al. (2016). Assessment of the radioprotective effect of propolis in breast cancer patients undergoing radiotherapy. New perspective for an old honey bee product. J Radiat Res Appl Sci. doi:10.1016/j.jrras.2016.06.001. Wang, H, & Kim, N. H. (2016). CDK2 is required for the DNA damage response during porcine early embryonic development. Biol Reprod. doi:10.1095/biolreprod.116.140244. Zhao, X. et al. (2016). Dioscin induces apoptosis in human cervical carcinoma HeLa and SiHa cells through ROS-mediated DNA damage and the mitochondrial signaling pathway. Molecules. doi:10.3390/molecules21060730. Chen, X. et al. (2016). Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines. Oncol Rep. 36:239-246. Coleman, J. et al. (2016). Detecting Apoptosis, Autophagy, and Necrosis. Apoptosis Methods in Toxicology . doi:10.1007/978-1-4939-3588-8_5. Ding, Y. et al. (2016). Induction of ROS overload by alantolactone prompts oxidative DNA damage and apoptosis in colorectal cancer cells. Int J Mol Sci. doi:10.3390/ijms17040558. Cui, F. M. et al. (2016). The role of miR-34a in tritiated water toxicity in human umbilical vein endothelial cells. Dose-Response. doi:10.1177/1559325816638585. Laks, D. R. et al. (2016). Inhibition of nucleotide synthesis targets brain tumor stem cells in a subset of glioblastoma. Mol Cancer Ther. doi:10.1158/1535-7163.MCT-15-0982. Abubakar, I. B. et al. (2016). Synergistic cytotoxic effects of combined δ-tocotrienol and jerantinine B on human brain and colon cancers. J Ethnopharmacol. doi:10.1016/j.jep.2016.03.004. Hofstetter, C. et al. (2016). Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage.J Cell Sci. 129:788-803. Si, L. et al. (2016). Dioscin suppresses human laryngeal cancer cells growth via induction of cell-cycle arrest and MAPK-mediated mitochondrial-derived apoptosis and inhibition of tumor invasion. Eur J Pharmacol. doi:10.1016/j.ejphar.2016.02.009. Qu, L. et al. (2016). Corosolic acid analogue, a natural triterpenoid saponin, induces apoptosis on human hepatocarcinoma cells through mitochondrial pathway in vitro. Pharm Biol. doi:10.3109/13880209.2015.1104699. Singh, A. K. et al. (2015). Parental age affects somatic mutation rates in the progeny of flowering plants. Plant Physiol. doi:10.1104/pp.15.00291. Yuan, L. et al. (2015). Serum collected from fruit and vegetable juice treated rats antagonizing H2O2-induced oxidative damage in PC12 cells. J Funct Foods. 20:496-505. Ramy, N. et al. (2015). Jaundice, phototherapy and DNA damage in full-term neonates. J Perinatol. doi:10.1038/jp.2015.166. Wu, C. F. et al. (2015). Anticancer activity of cryptotanshinone on acute lymphoblastic leukemia cells. Arch Toxicol. doi:10.1007/s00204-015-1616-4. Kim, M. J. et al. (2015). Antibacterial effect and mechanism of high-intensity 405±5nm light emitting diode on Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus under refrigerated condition. J Photochem Photobiol B. 153:33-39. Wang, X. et al. (2015). Enhancement of arabinocytosine (AraC) toxicity to AML cells by a differentiation agent combination. J Steroid Biochem Mol Biol. doi:10.1016/j.jsbmb.2015.08.023. Sun, X. et al. (2015). Electrochemical detection of 8-hydroxy-2′-deoxyguanosine as a biomarker for oxidative DNA damage in HEK293 cells exposed to 3-chloro-1, 2-propanediol. Anal Methods.doi:10.1039/C5AY01246E. Neumann, J. et al. (2015). Mangrove dolabrane‐type of diterpenes tagalsins suppresses tumor growth via ROS‐mediated apoptosis and ATM/ATR–Chk1/Chk2‐regulated cell cycle arrest. Int J Cancer. doi: 10.1002/ijc.29629. Singh, A. K. et al. (2015). Parental age affects somatic mutation rates in the progeny of flowering plants. Plant Physiol. 168:247-257. Hou, W. et al. (2015). The protecting effect of deoxyschisandrin and schisandrin B on HaCaT cells against UVB-induced damage. PLoS One. 10:e0127177. Kim, M. J. et al. (2015). Inactivation by 405±5 nm light emitting diode on Escherichia coli O157: H7, Salmonella Typhimurium, and Shigella sonnei under refrigerated condition might be due to the loss of membrane integrity. Food Control. doi:10.1016/j.foodcont.2015.05.012. Haeger, S. M. et al. (2015). Smad4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors. Oncogene. doi: 10.1038/onc.2015.112. Ong, J. Y. et al. (2015). 2-Methoxy-1, 4-naphthoquinone (MNQ) induces apoptosis of A549 lung adenocarcinoma cells via oxidation-triggered JNK and p38 MAPK signaling pathways. Life Sci. doi: 10.1016/j.lfs.2015.03.019. Prasad, M. A. et al. (2015). Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency. Blood. doi: 10.1182/blood-2014-12-617282. Obstoy, B. et al. (2015). Safety and performance analysis of acriflavine and methylene blue for in vivo imaging of precancerous lesions using fibered confocal fluorescence microscopy (FCFM): an experimental study. BMC Pulm Med. 15:30. Xiong, J. et al. (2015). Stemness factor Sall4 is required for DNA damage response in embryonic stem cells.J Cell Biol. 208:513-520. Hu, Y. et al. (2015). Bile acids regulate nuclear receptor (nur77) expression and intracellular location to control proliferation and apoptosis. Mol Cancer Res. 13:291-292. Gong, L. et al. (2015). p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res. 25:351-369. Jin, L. et al. (2015). Association between oxidative DNA damage and the expression of 8-oxoguanine DNA glycosylase 1 in lung epithelial cells of neonatal rats exposed to hyperoxia. Mol Med Rep. doi: 10.3892/mmr.2015.3339. 北京西美杰科技有限公司是Cell Biolabs品牌全国一级代理,为用户提供完善的技术支持与售后服务。如对产品感兴趣欢迎拨打西美杰客服热线400-050-4006或了解更多信息。 更多>

                      给药“神器”Alzet渗透压泵,让长时间给药实验更加简单高效

                      Alzet渗透压泵不仅可以保证持续稳定的输出药物,还能实现超长时间的给药实验,被广泛应用于多个研究领域,并在国际高水平期刊上发表文献多达19,000余篇。北京西美杰科技有限公司是Alzet品牌中国一级代理,可为Alzet用户提供全方位的售前售后技术问题解答。 更多>

                      新品| Mirus升级版CHO细胞高滴度瞬转表达系统

                      CHO细胞是生产抗体类药物广泛应用的工程细胞,而CHO细胞瞬时转染是新药研发过程中必不可少的技术手段。为了用低成本在较短时间内表达出足量的目的蛋白,Mirus新推出了一款适用于悬浮CHO细胞瞬转和蛋白高滴度表达的平台——CHOgro? High Yield Expression System。相比于Mirus第一代CHOgro?表达系统,新版CHOgro?高滴度蛋白表达系统引入了效价增强剂(CHOgro? Titer Enhancer)组分,在确保操作流程精简的同时,能够大幅度提高瞬转CHO细胞的蛋白产量。 更多>

                      NEW!专利产品Bambanker无血清即用型细胞冻存液

                      Bambanker无血清即用型细胞冻存液—给细胞更多的呵护 专利产品(专利号1347040) Serum-free for sensitive cell lines, like ES and primary cells, Gradual or programmable freezing is no longer necessary BAMBANKER产品特点 即用型细胞冻存液,无需程序性降温 尤其适用于各类敏感细胞,如ES细胞、原代细胞 高复苏率(请见对比图效果) 可-80℃或液氮中长期冻存,稳定保存1年以上 无血清,成份确定,避免由支原体、病毒、朊病毒及其他病毒颗粒引发的污染 产品经无菌检测,符合日本药典 产品可2~8 ℃稳定保存2年 BAMBANKER操作流程使用说明: 收集对数生长期的细胞(5 x 105 ~ 1 x 107) 用1ml BambankerTM重悬细胞,置于冻存管中,无需预冷。 品名 货号 规格 BambankerTM BB01 120ml BAMBANKER系列冻存液: 品名 描述 货号 规格 BambankerTM Direct 细胞冻存时无需离心,非常适用于杂交瘤细胞 BBD01 20ml BambankerTM HRM 使用人血清白蛋白,无动物源性 BBH01 20ml BAMBANKER is manufactured by LYMPHOTEC Inc. BAMBANKER与其他相关产品的复苏率效果比较 Bambanker使用发表文献(部分) ü T. Hikichi et al., Differentiation potential of parthenogenetic embryonic stem cells is improved by nuclear transfer. Stem cells25, 46 (Jan, 2007). ü S. Mieno et al., Characteristics and function of cryopreserved b